

Aan de slag met de impacttool

LBPISIGHT

Bouw | Ruimte | Milieu

Gerwin Beukhof

Introductie en inhoud

Gerwin Beukhof

Ass. Sector expert maakindustrie Adviseur duurzaamheid milieu LBP|SIGHT

- Aan de slag met 2 voorbeelden van circulai
- Voorbeeld 1: Elektrische fiets met lease con
- Voorbeeld 2: Modulaire notebook

Voorbeeld 1: Elektrische fiets met lease contract accu-pakketten

- Eerst zoeken naar een bill-of-materials
 - Waar bestaat het product uit?

Invoeren van de gegevens

- Als je de materialisatie van het product kent kun je dit gaan invoeren
- Soms zul je je moeten conformeren naar de datakwaliteit (versimpelen)
 - Bijvoorbeeld restmetalen 'koper' aannemen

-	DIJVOC	האבבות ובזו		per aannen	IEII		All All
ELEKTRISCHE I STELLA	FIETS	gemeen Materialen	Bewerking	Distributie Gel	Einde levensfase		
Gebru In deze lev	likte materia	len - Basis de gebruikte materialen meegeno	men. Vul deze tabel in aan de hand	d van de BOM van het product. Hot	ud rekening met productieverlies. Ind	ien een materiaal of massa niet beke	nd is maak dan een beargumentee
Ma	teriaalgroep	Materiaal	Massa (kg)	Secundaire content*;	Secundaire content* (%)	Secundaire content* (%)	Toelichting
	-		inclusief productieverlies	Standaard gegevens of eigen	Standaard gegevens	Eigen gegevens**	
	Elektronica	Accu Li-ion oplaadbaar	10,30	Standaard	2%	0%	
	Metalen	Ongelegeerd staal	18,20	Standaard	21%	0%	—
	Polymeren	Polypropeen (PP)	5,70	Standaard	0%	0%	
	Metalen	Koper	2,60	Standaard	74%	0%	
	Polymeren	Rubber	1,10	Standaard	0%	0%	
	Metalen	Aluminium	0,50	Standaard	74%	0%	
	Metalen	Koper	3,00	Standaard	74%	0%	
	Leeg	Leeg	0,00	Standaard	0%	0%	
	Leeg	Leeg	0,00	Standaard	0%	0%	
	Leeg	Leeg	0,00	Standaard	0%	0%	
	Leeg	Leeg	0,00	Standaard	0%	0%	
	Leeg	Leeg	0,00	Standaard	0%	0%	
	Leeg	Leeg	0,00	Standaard	0%	0%	
	Leeg	Leeg	0,00	Standaard	0%	0%	
	Leeg	Leeg	0,00	Standaard	0%	0%	
	Leeg	Leeg	0,00	Standaard	0%	0%	
	Leeg	Leeg	0,00	Standaard	0%	0%	
	Leeg	Leeg	0.00	Standaard	0%	0%	
	Leeg	Leeg	0,00	Standaard	0%	0%	
	Leeg	Leeg	0,00	Standaard	0%	0%	
-	Tetaal	5	/1/0		20.1	81.9%	

*secundaire content is de hoeveelheid gerecyclede of hergebruikte materialen in het product

**Eigen gegevens van secundaire content worden niet meegenomen in de berekening van de MKI-impact en milieuprofielen voor deze tool. Dit heeft alleen invloed op de circulariteitsindex

Jaar Pocultate

Productieproces

- Als je de processtappen kent kun je inschatten wat de verbruiken zijn.
 - Denk aan laswerk, snijwerk, ponsen, zagen of stralen
 - In de meeste gevallen is de benodigde energie in het productieproces niet dominant in het totaal. Je kunt dan afdoen met een grovere schatting. Uitzonderingen hierop zijn producten die onder een zeer hoge temperatuur geproduceerd worden. Denk aan glas of asfalt
 - Energiebehoefte van deelproducten (zoals staal) zijn al

TRISCHE FIETS	Algemeen Materialen	Bewerking	Distributie	Gebruik Einde levensfa	ase	
Bewerking - Basis	S					
De milieu-impact voor de produ	actieprocessen wordt berekend aan o	de hand van de energie die nodig is	voor de productie. Geef daa	rom hier het gebruik van energiedra	agers van de meest veelomvatte	nde bewerki
Energie intensieve	Energiedrager	Verbruik per	Eenheid	Toelichting		Milie
processon		producteenheid				per pro
processen		producteenneru				per pro
Laswerk	Elektriciteit (grijs)	2,00	kWh			per pro
Laswerk Snijwerk	Elektriciteit (grijs) Elektriciteit (grijs)	2,00 2,00	kWh kWh			per pro
Laswerk Snijwerk Poedercoat	Elektriciteit (grijs) Elektriciteit (grijs) Aardgas	2,00 2,00 2,00	kWh kWh m3	 		
Laswerk Snijwerk Poedercoat Naam proces 4	Elektriciteit (grijs) Elektriciteit (grijs) Aardgas Leeg	2,00 2,00 2,00 0,00	kWh kWh m3			
Laswerk Snijwerk Poedercoat Naam proces 4 Naam proces 5	Elektriciteit (grijs) Elektriciteit (grijs) Aardgas Leeg Leeg	2,00 2,00 2,00 0,00 0,00	kWh kWh m3 -			
Diocessen Laswerk Snijwerk Poedercoat Naam proces 4 Naam proces 5 Naam proces 6	Elektriciteit (grijs) Elektriciteit (grijs) Aardgas Leeg Leeg Leeg	2,00 2,00 2,00 0,00 0,00 0,00	kWh kWh - - -			
Laswerk Snijwerk Poedercoat Naam proces 4 Naam proces 5 Naam proces 6 Naam proces 7	Elektriciteit (grijs) Elektriciteit (grijs) Aardgas Leeg Leeg Leeg Leeg Leeg	2,00 2,00 2,00 0,00 0,00 0,00 0,00	kWh kWh - - - -			

ar Resultaten Volgende S

Distributie

- Als je gegevens weet over distributie kun je dit invoeren. Bij gebrek aan gegevens kun je uitgaan van ongeveer 150 km aan grondstoffentransporten en nog eens 150 km aan productdistributie.

Distributie - Basis

De ze levenscyclusfase beschrijft de milieu-impact die ontstaat bij het transport van de productielocatie(s) tot de plaats van gebruik. Dit zijn de kilometers om het product bij de projectlocatie te krijgen.

Transportmethoden	Transport afstand;	Transport afstand (km)	Transport afstand (km)	Transportgewicht (kg)	Aantal tonkilometers (tkm)	Toelichting
Vrachtwagen (onbekend)	Standaard	150	0	0	0,00	
Vrachtwagen (onbekend)	Standaard	150	0	0	0,00	
Leeg	Standaard	0	0	0	0,00	
Leeg	Standaard	0	0	0	0,00	
Leeg	Standaard	0	0	0	0,00	
Leeg	Standaard	0	0	0	0,00	
Leeg	Standaard	0	0	0	0,00	
Leeg	Standaard	0	0	0	0,00	
Totaal					0,00	

* Niet voor alle transportmethode zijn de standaardgegevens beschikbaar. In dat geval dient u uw eigen gegevens in te voeren. Het vakje zal rood kleuren wanneer dat het geval is.

Verbruik

- Voor veel producten is het gebruik insignificant. Denk aan de gebruiksemissies van een bureaustoel. Bij een elektrische fiets is er echter wel sprake van een gebruiksemissie, namelijk het energieverbruik van het laden van de fiets

ELEKTRISCHE FIETS	Algemeen	Materialen	Bewerking	Distributie	Gebruik	Einde levensfase	

Energiegebruik door gebruiker van product - Basis

Tijdens de gebruiksfase kan het voorkomen dat het product energie nodig heeft. Hieronder kunt u - indien van toepassing- het energiegebruik door de gebruiker van het product per producteenheid specificeren

66.54
€ 0,51
€0,00
€0,00
€0,00

Einde leven

- In de tool worden einde levenscenario's aangenomen. Zo weten we bijvoorbeeld dat gemiddeld 94% van het staal wordt gerecycled. Het overige deel wordt verbrandt en gestort.
- Je kunt hier ook andere scenario's aannemen, zoals het volledig recyclen van de accu-pakketten in het geval van een

ELEKTRISCHE FIETS	Algemeen	Materialen	Bewerking	Distributie	Gebruik	Einde levensfase

Einde levensfase - Basis

Materiaal	Massa (kg)	Percentage recycling /	Afvalscenario;	Afval	scenario				Afvalsce	nar
		hergebruik	Standaard gegevens of eigen gegevens		Verbranding	ng Recycling Hergebruik*			Verbrandin	g Re
ccu Li-ion oplaadbaar	10,3	10%	Standaard	0%	90%	10%	0%	0%	0%	1
Ongelegeerd staal	18,2	94%	Standaard	3%	3%	94%	0%	0%	0%	
Polypropeen (PP)	5,7	10%	Standaard	0%	90%	10%	0%	0%	0%	
Koper	2,6	90%	Standaard	5%	5%	90%	0%	0%	0%	1
Rubber	1,1	5%	Standaard	10%	85%	5%	0%	0%	0%	
Aluminium	0,5	90%	Standaard	5%	5%	90%	0%	0%	0%	
Koper	3	90%	Standaard	5%	5%	90%	0%	0%	0%	1
Leeg	0	0%	Standaard	0%	0%	0%	0%	0%	0%	1
Leeg	0	0%	Standaard	0%	0%	0%	0%	0%	0%	
Leeg	0	0%	Standaard	0%	0%	0%	0%	0%	0%	1
Leeg	0	0%	Standaard	0%	0%	0%	0%	0%	0%	
Leeg	0	0%	Standaard	0%	0%	0%	0%	0%	0%	1
Leeg	0	0%	Standaard	0%	0%	0%	0%	0%	0%	1
Leeg	0	0%	Standaard	0%	0%	0%	0%	0%	0%	
Leeg	0	0%	Standaard	0%	0%	0%	0%	0%	0%	
Leeg	0	0%	Standaard	0%	0%	0%	0%	0%	0%	1
Leeg	0	0%	Standaard	0%	0%	0%	0%	0%	0%	1
Leeg	0	0%	Standaard	0%	0%	0%	0%	0%	0%	
Leeg	0	0%	Standaard	0%	0%	0%	0%	0%	0%	
Leeg	0	0%	Standaard	0%	0%	0%	0%	0%	0%	
Totaal	41.40	59%							(C.)	1.11

Interpretatie resultaten

- Met het inzicht in de milieu-impact kun je beter sturen
- Bijvoorbeeld is duidelijk zichtbaar dat het grootste deel van de impact is gerelateerd aan de productie van de Li-ion batterij.
- Hierop passen circulaire modellen zoals een lease-constructie, waarbij oude batterijpakketten worden ingenomen en gerefurbished worden uitstekend.
- Daarnaast vooral impact in: klimaatverandering (CO₂) en humane toxiciteit (gifstoffen)
- Ongeveer 4 ton CO₂ bij productie en gebruik

I BPISIGHT

Vergelijken resultaten

- Met het refurbishen van accu-pakketten kun je tot wel 70% van de grondstoffen uitsparen.
- Het refurbishen kost wel energie, wat leidt tot iets hogere emissies in productie
- Naar schatting kan er **47%** van de impact worden gereduceerd!
- Daarnaast is de keten veel beter gesloten (tot 65%)

CirculariteitsIndex ٤Ľ door het percentage recycled content op te tellen bij het hergebruik percentage in de einde levensfase per materiaal en dit vervolgens te delen door 2. Deze circulariteitsindex sluit aan bij de Mia/vamil circulaire gebouwen **ELEKTRISCHE FIETS** Alternatief **65%** lica 40% Milieul 21% 52% Secundaire content Secundaire content 78% 59% Hergebruik na Hergebruik na einde einde

Oorsprong milieu-impact

In deze staafdiagrammen zijn de milieukosten van het basis ontwerpscenario vergeleken met het alternatieve ontwerpscenario.

In de eerste grafiek gaat het om een vergelijking van de milieukosten over de hele levensduur van het product. In de tweede zijn de milieukosten per jaar van het eerste ontwerpscenario vergeleken met de milieukosten per jaar van het alternatieve ontwerpscenario.

Voorbeeld 2: Modulaire notebook!

- Waar bestaat dit product uit?
 - Uitgaande van standaard Macbook Air (11")

Verschil in ontwerp

- Benodigde materialen veelal gelijk
- Modulaire ontwerp maakt het verschil
 - Door upgrade mogelijkheid verleng je de levensduur
 - Wel extra materiaal benodigd (!)
- In dit voorbeeld gaan we uit van 3 jaar levensverlenging en vervanging van het accupakket en de processor (i.v.m. snelheid)

Verschil in resultaten

Oorsprong milieu-impact

In deze staafdiagrammen zijn de milieukosten van het basis ontwerpscenario vergeleken met het alternatieve ontwerpscenario.

In de eerste grafiek gaat het om een vergelijking van de milieukosten over de hele levensduur van het product. In de tweede zijn de milieukosten per jaar van het eerste ontwerpscenario vergeleken met de milieukosten per jaar van het alternatieve ontwerpscenario.

Het kan zijn dat een product over zijn hele levensduur/ gebruiksduur hogere milieukosten heeft, maar tegelijk ook

interessant om de milieukosten per jaar te onderzoeken.

een langere levensduur/ gebruiksduur heeft. De milieukosten zouden dan per jaar lager kunnen zijn. Daarom is het ook

Conclusie

- Met circulaire interventie en ontwerpen kan veel milieu-impact worden voorkomen.
- De impacttool kan je op weg helpen om milieu-impact te leren begrijpen
- Het maakt zichtbaar waar de zwaartepunten liggen
- Het maakt het mogelijk om alternatieve ontwerpen door te rekenen. Je kunt spelen met: levensduur, (primair) materiaalgebruik, hergebruik en recycling.
- Kijk ook eens wat biobased alternatieven doen voor energie-intensieve materialen zoals aluminium.

